68,885 research outputs found

    Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials

    Full text link
    We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two separated ones inside harmonic traps. At high density, however, interesting features appear as the consequence of the quantum tunneling between the two wells and the competition between the "superfluid" and Mott regions. They are characterized by a rich step-plateau structure in the visibility and the satellite peaks in the momentum distribution function as a function of the on-site repulsion. These novel properties shed light on the understanding of the phase coherence between two coupled condensates and the off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure

    Gate-controlled generation of optical pulse trains using individual carbon nanotubes

    Get PDF
    We report on optical pulse-train generation from individual air-suspended carbon nanotubes under an application of square-wave gate voltages. Electrostatically-induced carrier accummulation quenches photoluminescence, while a voltage sign reversal purges those carriers, resetting the nanotubes to become luminescent temporarily. Frequency domain measurements reveal photoluminescence recovery with characteristic frequencies that increase with excitation laser power, showing that photoexcited carriers quench the emission in a self-limiting manner. Time-resolved measurements directly confirm the presence of an optical pulse train sychronized to the gate voltage signal, and flexible control over pulse timing and duration is demonstrated.Comment: 4 pages, 4 figure

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Accurate determination of tensor network state of quantum lattice models in two dimensions

    Full text link
    We have proposed a novel numerical method to calculate accurately the physical quantities of the ground state with the tensor-network wave function in two dimensions. We determine the tensor network wavefunction by a projection approach which applies iteratively the Trotter-Suzuki decomposition of the projection operator and the singular value decomposition of matrix. The norm of the wavefunction and the expectation value of a physical observable are evaluated by a coarse grain renormalization group approach. Our method allows a tensor-network wavefunction with a high bond degree of freedom (such as D=8) to be handled accurately and efficiently in the thermodynamic limit. For the Heisenberg model on a honeycomb lattice, our results for the ground state energy and the staggered magnetization agree well with those obtained by the quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table

    Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells

    Get PDF
    Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells is studied via the fully microscopic kinetic spin Bloch equation approach where all the scatterings, such as the electron-impurity, electron-phonon, electron-electron Coulomb, electron-hole Coulomb, electron-hole exchange (the Bir-Aronov-Pikus mechanism) and the ss-dd exchange scatterings, are explicitly included. The Elliot-Yafet mechanism is also incorporated. From this approach, we study the spin relaxation in both nn-type and pp-type Ga(Mn)As quantum wells. For nn-type Ga(Mn)As quantum wells where most Mn ions take the interstitial positions, we find that the spin relaxation is always dominated by the DP mechanism in metallic region. Interestingly, the Mn concentration dependence of the spin relaxation time is nonmonotonic and exhibits a peak. This behavior is because that the momentum scattering and the inhomogeneous broadening have different density dependences in the non-degenerate and degenerate regimes. For pp-type Ga(Mn)As quantum wells, we find that Mn concentration dependence of the spin relaxation time is also nonmonotonic and shows a peak. Differently, this behavior is because that the ss-dd exchange scattering (or the Bir-Aronov-Pikus) mechanism dominates the spin relaxation in the high Mn concentration regime at low (or high) temperature, whereas the DP mechanism determines the spin relaxation in the low Mn concentration regime. The Elliot-Yafet mechanism also contributes the spin relaxation at intermediate temperature. The spin relaxation time due to the DP mechanism increases with Mn concentration due to motional narrowing, whereas those due to the spin-flip mechanisms decrease with Mn concentration, which thus leads to the formation of the peak.... (The remaining is omitted due to the space limit)Comment: 12 pages, 8 figures, Phys. Rev. B 79, 2009, in pres
    corecore